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Skipping stones
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69622 Villeurbanne Cedex, France

(Received 5 April 2005 and in revised form 22 July 2005)

We first report a quantitative experimental study of the collision of a spinning disk
with water, from a single to many skips. We then focus on the high spin limit and
propose a simple model which enables us to discuss both the physical origin of the
bounces and the source of the dissipation which fixes the number of skips.

1. Introduction
“One, two, three, four”: this is the number of skips achieved by the stone in figure 1.
The rules of competition for skipping stones have never changed (Thomson 2000):

a stone or a shell is thrown over a water surface and the maximum number of
bounces distinguishes the winner. Part of the attraction of this game comes from the
puzzling questions it raises: How can a stone bounce on water? How many skips can
it achieve?

The impact of objects on water has been the object of a large amount of work
in the literature (von Kármán 1930; Johnson & Reid 1975; Johnson 1998). Most
of these works have focused (mainly due to military applications, e.g. Dambusters)
on the impact of spherical and cylindrical objects, and clarified rebound conditions
as a function of impact velocity. If R characterizes the size of the object, U its
velocity and ρ, ν, σ the fluid properties (respectively density, kinematic viscosity and
surface tension) all the above studies are in the limit of large Reynolds number
(Re ≡ UR/ν � 1) and large Weber number (ρU 2R/σ � 1) where inertial effects
dominate both viscous and surface forces. Our study belongs to the same domain.
However, even if the phenomena at play are similar in the case of stone skipping, the
case of a flat (generally spinning) object like a stone is more difficult. In this latter case,
a few theoretical analyses have attempted to extract the physical mechanisms (Stong
1968; Crane 1988; Bocquet 2003) and recently, three of us have published the first
quantitative experimental results on the first bounce (Clanet, Hersen & Bocquet 2004).
This study has motivated extensive numerical simulations (Nagahiro & Hayakawa
2005; Yabe et al. 2005). Here, we first complete our previous results by showing the
skipping stone domain in a general phase diagram. Then, we extend the study to
several skips and determine the origin of the dissipation responsible for the end of
the skipping.

2. Experimental setup
The conventions used throughout the article are presented in figure 2: a model

stone of thickness h and radius R has a translation velocity U and spinning velocity
Ω ≡ Ωn, where n is the unit vector normal to its surface. The orientation of the



138 L. Rosellini, F. Hersen, C. Clanet and L. Bocquet

Figure 1. Superposition of images showing, from left to right, the successive positions of a
spinning stone during the first four skips.
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Figure 2. Conventions used and geometrical properties of the disks.
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Figure 3. Chronophotography of a skipping stone, obtained with an aluminium disk of
radius R = 2.5 cm, thickness h = 2.75 mm, translation velocity U = 3.5 m s−1, angular velocity
Ω =65 rot s−1, attack angle α = 20◦, trajectory angle β =20◦. Time increases from left to right
and from top to bottom with the time step �t =6.5 ms.

stone is defined by the attack angle α such that cos α ≡ n · ez, where ez is the unit
vector normal to the unperturbed water surface. The direction of motion of the stone
is defined by the impact angle β such that cos β ≡ U · ex , where ex is the unit vector
tangent to the water surface.

An experimental setup has been designed to control independently Ω , U , α and β .
The collision of the stone with water is recorded using a high-speed video camera
(Kodak HS4540). Most of the experiments are conducted with an aluminium stone,
that is with the stone (s) to water (w) density ratio: ρs/ρw ≈ 2.7. The geometrical
characteristics of the stones are presented in figure 2.

3. Experimental results
3.1. A single skip

3.1.1. Chronophotography

Chronophotography of a typical collision sequence is presented in figure 3. The
collision time τ is measured on such graphs as the time during which the stone is in
contact with water: as an example we measure τ ≈ 32 ms in figure 3. We also observe
that under these conditions of large spin velocity, the attack angle α remains constant
during the whole impact process. Finally, the cavity created is not symmetrical: it
exhibits a larger curvature close to the impact.
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Figure 4. Chronophotography of a surfing stone, obtained with an aluminium disk with
R = 2.5 cm, h = 2.75 mm, U = 3.5 m s−1, α = 30◦, β = 35◦, Ω = 65 rot s−1. The time step between
each image is �t = 8.9 ms.
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Figure 5. Chronophotography of a diving stone, obtained with an aluminium disk with
R = 2.5 cm, h = 2.75 mm, U = 3.5 m s−1, α = 35◦, β =20◦, Ω = 0 rot s−1. The time step between
each image is �t = 8.9 ms.

3.1.2. Surfing

The collision sequence repeated in a ‘self-similar’ way until the parameters at the
impact (angles and velocity) prevent the stone escaping from the water and force it
to surf. This surfing regime is illustrated in figure 4. We observe in this sequence that
the angle α remains constant over the sequence as in figure 3, but the stone, even
though it oscillates vertically, never detaches from the water.

3.1.3. Effect of spin

The spin velocity has a strong influence on the collision, in particular via its effect
on the attack angle α. This is illustrated in figure 5, where Ω =0: without any rotation,
the stone tumbles at the impact and dives into the pool. The main effect of spin is
thus to stabilize the stone during the impact, through the gyroscopic effect (Bocquet
2003).

More quantitatively, we present in figure 6(a) the measured collision time τ as a
function of spin velocity Ω . This curve exhibits a strongly enhanced collision time
at small spin velocity Ω , emphasizing the absence of a rebound in the Ω → 0 limit.
In the other limit of large spin velocity, the collision time is observed to reach a
saturation value (of the order of 30 ms), indicating that the disk is fully stabilized by
the gyroscopic effect.

This effect can be rationalized by introducing the Rossby number, Ro = Ωτ , which
compares the rotation time to the contact time. In the large spin velocity regime
(Ro � 1), the attack angle α is constant and equal to its initial value, as observed in
figures 3 and 4. According to figure 6(a), stabilization occurs for Ro � 1.
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Figure 6. (a) Evolution of the collision time τ with the spinning velocity Ω for U = 3.5 m s−1,
α = 20◦, β =20◦. (b) Domain of the skipping stone in the {α, Umin} plane with Ω = 65 rot s−1,
β =20◦. (c) Domain of the skipping stone in the {α, β} plane with, Ω = 65 rot s−1, U =
3.5 m s−1. In R = 2.5 cm, h = 2.75 mm (a–c) the continuous lines are to guide the eye.
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Figure 7. Chronophotography of a skipping stone in an intermediate rotation regime:
R = 2.5 cm, h = 2.75 mm, U =3.5 m s−1, α = 20◦, β = 18◦, Ω = 10 rot s−1. The time step
between each image is �t = 8.9 ms.

3.1.4. Intermediate rotation rate: the ‘trout’ regime

For intermediate rotation rates, the stone can bounce although its angle with the
surface changes during the impact. We have called this the ‘trout’ regime and it is
illustrated in figure 7. In this figure, we observe that the initial inclination of the stone
(α = 20◦) decreases at the impact to almost α = 0 (pictures 2 and 3). Then it increases
and allows the stone to bounce (figure 8). Here, we clearly have a coupling between
the cavity created at the impact and the angle α of the stone. In the remaining part
of this paper we restrict our study to the high spin regime: Ro � 1.

3.1.5. Dynamical phase diagram

With the three remaining control parameters, {U, α, β}, a dynamical phase diagram
can be constructed, highlighting the conditions for a successfull bounce (the ‘skipping
stone’ domain). Cross-sections in the {U, α} and {α, β} variables are shown in
figures 6(b) and 6(c). Unexpectedly this phase diagram points out the specific role
played by the value α � 20◦: the lowest velocity for a rebound, Umin, reaches a
minimum (Umin ≈ 2.6 m s−1) for α � 20◦, while the maximal successful domain in β

is also achieved for this specific value of α. One may also observe that no rebound
is possible for impact angles β larger than 45◦. In these ‘no rebound regions’, the
stone is observed to surf as in figure 4. We report in figure 8(a) the experimental
measurements for the collision time for a given stone at different speed and angle β .
The main feature on this plot is the existence of a minimal value of the collision time
τmin again obtained for α � αmin = 20◦.
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Figure 8. (a) Evolution of the collision time τ as a function of the attack angle α for
R = 2.5 cm, h = 2.75 mm and different conditions: �, U = 3.5 m s−1, β = 20◦; �, U = 3.5 m s−1,
β = 30◦, �, U = 5 m s−1, β = 20◦. (b) Evolution of the minimal contact time τmin with

the characteristic time scale
√

hR/U with β = 20◦ and α ≈ 20◦ and different stones: �,
R = 2.5 cm, h = 2.75 mm; � , R =5 cm, h = 2.55 mm; �, R = 2.5 cm, h =5.55 mm; �,
R = 5 cm, h = 5.55 mm; the solid line present the results obtained numerically through the
integration of equation (4.5).

In order to understand more specifically the physical mechanisms at play, we studied
the evolution of this minimal collision time τmin as a function of velocity U for different
stone diameters and thicknesses. As indicated in figure 8(b), the minimal contact time
is found to follow the scaling, τmin ∝

√
hR/U (for fixed α ≈ 20◦ and β = 20◦). This

scaling is suggested by dimensional analysis: since the lift force Flift is the key aspect

in the rebound process, a collision time can be constructed as τ ∼
√

mR/Flift with
m the mass of the stone. This scaling is obtained using Newton’s second law with
R/τ 2 as the characteristic acceleration. Now for the velocities under consideration, the
Reynolds number is quite large (Re = UR/ν ∼ 105, with ν the kinematic viscosity of
water) and the lift force is expected to scale as Flift ∼ ρwSwettedU

2, where Swetted ∼ πR2

(Landau & Lifshitz 1959). Using m = ρshπR2, one gets τ ∝
√

hR/U , as is measured
experimentally in figure 8(b).

3.2. Many skips

We now turn to the observation of a complete skipping stone sequence as presented
in figure 1.

3.2.1. Velocity U and attack angle β

In figures 9(a) and 9(b) we present the values of the horizontal velocity Ux and
attack angle β after the impact as a function of their value before the impact
(transfer function). This transfer function is particularly relevant for the skipping
stone problem since the velocity and attack angle after a given collision are equal to
the initial velocity and attack angle for the next collision: this property is due to the
parabolic flight between two collisions (air friction being negligible).

An important point which emerges from figure 9(a) is that the horizontal component
of the velocity barely changes over the collisions. On the other hand the attack
angle exhibits a strong variation and decreases continuously over the collisions. This
observation suggests that only the vertical (z) component of the velocity of the stone
is strongly affected during the collision.
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Figure 9. (a) Transfer function of the horizontal component of the velocity Ux for stone 1
and different values of α (either 7◦ or 20◦) and different values of β (ranging from 20◦ to
26◦). The example marked with the white squares has been obtained with α =7◦ and β = 26◦.
(b) Transfer function of the angle β for stone 1 and different values of α (either 7◦ or 20◦)
and different values of β (ranging from 20◦ to 26◦). The example marked with the white
squares has been obtained with α = 7◦ and β = 26◦ and U =4.5 m s−1. (c) Number of skips as
a function of the initial velocity for stone 1 and α = 7◦ and β = 20◦ (�), α = 10◦ and β0 = 9◦

(�). The continuous lines are the theoretical predictions obtained with the parameters of the
experiment: α =7◦ and β0 = 20◦(bottom line) and α = 10◦ and β0 = 9◦ (top line).

3.2.2. Number of skips

In figure 9(c) we present the evolution of the number of skips as a function of
the initial velocity. In the present velocity regime, this number is basically a linear
function of the velocity, above the minimum velocity introduced in figure 6(b).

4. Theoretical model of the collision process
4.1. Towards a simple mechanical approach

4.1.1. The hydrodynamic lift force on the disk

The crucial ingredient of the description is the hydrodynamic force acting on the
disk. For the velocities under consideration here (U ∼ ms−1) the Reynolds number
(Re ≡ UR/ν) is of the order of 105. In this potential flow limit, the reaction of
the water on the stone is expected to take the form (von Kármán 1930; Landau &
Lifshitz 1959)

FL = CLρwU 2Swettedf (α, β)n (4.1)

where Swetted is the disk area in contact with water, CL the lift coefficient, and f (α, β)
a non-dimensional function which contains the angular dependence of the lift force.

The difficult part is to propose a consistent description of the function f (α, β). Let
us first note that this function is expected to depend on the total angle γ = α + β , which
is the relative angle between the water stream and the stone. Furthermore, symmetry
considerations suggest that the function f (γ ) should be odd in γ (one expects it
to change sign around γ = 0). We have conducted complementary experiments to
measure the lift force on a disk in a water stream, as described in the Appendix, and
suggest the following expression for the force:

FL = 1
2
ρwU 2Swetted sin(α + β)n. (4.2)

As a by-product of these experiments, the dependences on the wetted area Swetted

and velocity U have been confirmed. The value CL � 0.5 is also provided by the
experiments, which is the same as found by Glasheen & McMahon (1996).
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4.2. Some qualitative remarks

A few comments can be made on the limit α, β � 1. This limit is often achieved after
the first collision where |β| takes a small value, that is tangent to the water surface
(see figure 1). In this limit the horizontal force reduces to Fx ≈ 0.5ρwU 2Swetted(α + β)α.
One deduces that Fx is order 2 in α which implies that the momentum in the x-
direction is weakly affected during the collision. This is qualitatively observed in
figure 9(a).

Along the z -direction, Fz ≈ 0.5ρwU 2Swetted(α + β), from which Fz is first order in α,
contrary to Fx which is second order. The momentum evolution in the z -direction is
thus faster than in the x-direction. Moreover, the α + β dependence implies that, at
a given z location, Fz is larger in the downgoing phase (β > 0) than in the upgoing
one (β < 0). This difference in the value of the reaction force is the physical origin of
the asymmetry of the air cavity and of the dissipation (see § 4.4).

For the gyroscopic stabilization, the Euler equations for the symmetrical top
(Bocquet 2003) lead to the evaluation of the relative inclination of the stone at
the impact: δα/α ∼ F.R/(mR2Ω2). Using the expression for the force F , we get:
δα/α ∼ (ρ/ρs)U

2/(RhΩ2). The stabilization of the stone (δα/α � 1) is thus expected
in the limit Ro �

√
ρ/ρs (using the previous estimate of the collision time, τ ∼

√
hR/U

to define Ro).

4.3. Equations of motion

The equation of motion we integrate to get the stone trajectory is

m
dU

dt
= K 0.5ρwU 2Swetted sin(α + β)n + mg. (4.3)

The velocity is given by U 2 = U 2
x +U 2

z and g is the acceleration due to gravity. The
constant K = 1 when the stone touches the water and is zero while it is in the air. In
(4.3) the wetted area Swetted depends on the immersed depth z and thus varies during
the collisional process. For a circular stone, the immersed area is given in terms of
the area of a truncated circle as

Swetted(s) = R2[cos−1(1 − s/R) − (1 − s/R)
√

1 − (1 − s/R)2], (4.4)

where s = |z|/ sinα is the maximum immersed length (Bocquet 2003). Initial conditions
for the equation of motion, (4.3), fix the initial velocity U = (Ux(t = 0)2 + Uz(t =0)2)1/2

and angle β0 = tan−1(−Uz(t = 0)/Ux(t =0)). By convention z(t = 0) = 0. Note that in
the present high spin velocity limit, the angle α remains almost constant during the
collision. This is different for the angle β , which is related to the direction of the
velocity with respect to the horizontal, β = tan−1(−Uz(t)/Ux(t)). Since the stone moves
up and down, this angle does vary over the collision time, and changes sign.

The nonlinear equation (4.3) can be solved numerically. The first interesting result
obtained from this description is that a minimum velocity Umin is required for the
stone to rebound. Mathematically speaking this corresponds to a situation where the
stone is able to come back to its initial depth (z = 0). For U > Umin the depth z(t) of
the stone returns to its initial value z =0 after a finite (collision) time. On the other
hand, for U < Umin, the depth z always remains negative and the stone is unable to
return to the water surface. We plot in figure 10(a) the minimum velocity obtained
through the numerical integration of equation (4.3). Despite the simplicity of the
model, this figure reveals a good agreement between the experimental results and the
numerical ones. A similar agreement is found for the collision times, as shown in
figure 10(b), and for the stone-skipping domain, see figure 10(c). This indicates that
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the model is able to capture the physical mechanisms at play during the stone–water
collision.

It is easy to obtain the total number of skips for given initial velocity U , and
angles α, β . After a given collision, numbered as n, both the velocity and angle β are
computed at time t = τ , with τ the collision time. These values are then taken as input
for the initial conditions for the next, n+ 1, collision. This process is repeated until
the stone is unable to bounce. The predictions of this description are plotted against
the experimental results in figure 9(c). Again, the agreement is seen to be good.

4.4. Source of dissipation

We now focus more precisely on the origin of the dissipation, responsible for the
end of bouncing. This discussion relies on the following observations: the horizontal
velocity barely varies over the collisions (especially in the small-α limit), while the
angle β ≡ tan−1(−Vz(t)/Vx(t)) decreases over the collisions. Assuming Vx(t) ≈ U ,
one obtains for small angles β � − Vz(t)/U . These observations allow a simplified
analysis of the motion along the z-axis:

m
dUz

dt
= F z

L − mg. (4.5)

The projection of lift force along z becomes

F z
L = 1

2
ρwU 2Swetted(z)f (α + β) cos(α). (4.6)

Now for small angles β , one may write f (α +β) � f (0)(α) + f (1)(α)β , with in the
present disk geometry f (0)(α) = sin(α) and f (1)(α) = cos(α). Using β � −Vz(t)/U , one
obtains eventually F z

L = F (0)(z) − ζ (z)Vz with F (0)(z) = 1
2
ρwU 2Swetted(z) f (0)(α) cos(α),

and ζ (z) = 1
2
ρwUSwetted(z) f (1)(α) cos(α).

The parameter ζ plays the role of an effective friction coefficient. This is more
explicit when rewriting the equation of motion along z:

m
dVz

dt
= F (0)(z) − ζ (z)Vz − mg. (4.7)

This equation takes the form of a damped nonlinear oscillator. This shows that the
velocity along z, hence β , will decrease over the collisions. This can be verified
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Figure 11. (a) Picture of the experiment conducted to measure the reaction force of the
water. (b) Quantitative evolution of the reduced force F/(ρwU 2Swetted) as a function of α.

explicitly by computing the ‘z-energy’ dissipation from (4.7) over a collision time τ :

1
2
m

[
V 2

z

]
final

− 1
2
m

[
V 2

z

]
initial

= −
∫ τ

0

dt ζ (z)V 2
z (t). (4.8)

This also indicate that in order to bounce the initial ‘z-kinetic energy’ 1
2
m[V 2

z ]initial has

to be larger than the dissipated energy : 1
2
m[V 2

z ]initial >
∫ τ

0
dt ζ (z)V 2

z (t). This condition
is at the origin of the existence of a threshold minimum velocity for the stone to
bounce (see figure 10) and correctly obtained through the numerical integration of
equation (4.3). Globally, the stone does not stop because its initial kinetic energy is
lost (since Vx is barely modified over the skips). Rather, dissipation originates more
subtly from the dependence of the lift force on the attack angle β , leading to a
decrease of only the vertical component of the velocity over the collisions, up to its
minimum threshold value.

5. Conclusion
Our study has highlighted the physical mechanisms involved in the skipping-stone

phenomenon. In the high spinning velocity regime, we have shown that the stone
bounces due to the hydrodynamic response of the water and that the source of
dissipation lies in the dependence of this reaction force on the angle between the
water surface and the trajectory of the stone. A natural extension of this study would
be to examine the ‘trout’ regime, where a coupling between translation and spin effects
is expected.

Appendix. Measurements of the lift force on a disk
The lift is measured experimentally, using the setup presented in figure 11(a): a

disk with fixed orientation is partially immersed at a fixed depth into a water stream,
with known velocity. The force on the disk is measured thanks by a gauge. In
this geometry, both the angle α and the relative velocity U can be varied. Conversely
the angle β is here equal to zero. The stream velocity is typically of the order of
1 m s−1.
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The experimental results for the lift force are summarized in figure 11(b): these
experiments are well described by FL = 1

2
ρwV 2Swetted sin(α). Assuming that the lift

force depends on the angles α and β via the combination α + β , this leads to the final
results for the lift force

FL = 1
2
ρV 2S sin(α + β). (A 1)
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